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Abstract 
 
This study focuses on persistence in research productivity over the course of an individual’s 
entire scientific careers. We track “late-career” scientists (N=324,463) in 16 STEMM disciplines 
(science, technology, engineering, mathematics, and medicine) from 38 OECD countries for up 
to five decades. We examine the details of their mobility patterns between the top, middle, and 
bottom productivity classes. Methodologically, we turn a large-scale publication and citation 
bibliometric dataset into a comprehensive, longitudinal data source for research on careers in 
science. The global science system emerges as highly immobile: 60% of global top performers 
continue their careers as top performers and half of global bottom performers as bottom 
performers. Jumpers-Up and Droppers-Down are extremely rare in science. Our regression 
analyses show that productivity is highly path dependent: for all disciplines examined, there is a 
single most important predictor of being a top performer: being a top performer at an earlier 
career stage.  
 
Introduction 
 
The focus of the present study is persistence in top and bottom individual research productivity 
from a lifetime perspective—over the course of an entire scientific career. We are tracking 
“late-career” scientists (N=324,463) from 38 OECD countries for up to five decades to examine 
their mobility patterns between the top, middle, and bottom productivity classes.  
 
We turn large-scale publication and citation bibliometric dataset into a global, comprehensive, 
multidimensional, and longitudinal data source for research on careers in science. Most 
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importantly, we move from individual publications (and their properties) to individual scientists 
(and their characteristics) as a unit of analysis. We construct individual lifetime publication and 
citation histories for every scientist in our sample, restricting our research to 16 STEMM 
disciplines (science, technology, engineering, mathematics, and medicine). In our context, “late-
career” scientists are defined as individuals with at least 25 years of publishing experience. 
 
Because our study is of a longitudinal nature, we use a global bibliometric dataset to study 
scientific careers1,2,3: the same individuals are tracked over time over the decades of their 
publishing careers. In global academic career research, ever more datasets are currently tested 
(e.g., integrated datasets with administrative and biographical, commercial and noncommercial, 
national and global data; see, e.g.,4,5,6). We are testing the usefulness of publication and citation 
metadata by examining the global science profession from a longitudinal perspective; these 
metadata are in fact digital traces left by scientists throughout their professional lives as long as 
they keep publishing. Digital traces7,8 allow for the emergence of the whole new 
multidisciplinary field of science of science9,10,11, hence allowing science career studies to 
radically move beyond traditional small-scale surveys and interviews12,13. Digital traces left by 
scientists in global datasets allow researchers to change their focus from single national science 
systems to a global science system5,14,15. 
 
The present study explores mobility between the three individual productivity classes—top, 
middle, and bottom (constructed according to the 20/60/20 formula)—throughout long 
academic careers encompassing early, mid-, and late-career periods. Our initial hypotheses, 
which are based on research productivity literature16,17,18, especially high research productivity 
literature focused on “top performers” and “prolific” scientists19,20,21,22,23 are, first, that scientists 
are generally locked in within their productivity classes for years18,24; second, we argue that the 
elite strata of highly productive scientists often continue their whole careers as highly 
productive25,26; and, finally, we argue that radical changes in productivity classes, especially 
upwards, although popular in narratives about academic careers, are highly improbable in 
practice because of the cumulative nature of advantages and disadvantages in careers, as shown 
over the decades in the traditional sociology of science27,28,29. 
 
The current study follows research lines explored in science of science, which provides data-
driven insights into the inner workings of science11. A shift toward new digitalized data sources 
allows for the exploration of new questions about scientists8. Traditional cross-sectional studies 
can be complemented with longitudinal studies30,31 in which individuals are tracked over time. 
The career histories of thousands of individual scientists can change the way we think about 
science and scientists because of an unprecedented level of detail. As a result, the various 
aspects of academic careers have recently been examined both globally (gender disparities in 
careers4,14; continuous publishing32; collaboration with top scientists22; gendered nature of 
authorship15; women in science33) and nationally, especially in the US (e.g., productivity across 
career stages34; long-term effects on careers of initial setbacks35; careers in elite universities36; 
credit distribution37), at a scale unthinkable in career studies before. 
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Productivity Classes in Single-Nation Studies 
 
We have tested our initial hypotheses in a national-level strand of research under the general 
labels of “once highly productive, forever highly productive”38,39. The patterns found consistently 
supported our initial intuitions about immobility in the system: the majority of highly productive 
assistant and associate professors continued their careers as highly productive associate and full 
professors. In the present research, we develop our methodological approach to study mobility 
between productivity classes (computed for four major productivity types) of scientists from 38 
OECD countries, mostly powerfully involved in the ongoing globalization of science40,41. We 
track 324,463 late-career scientists from a wide variety of research systems, which gives us the 
potential to test hypotheses about the scientific profession more generally. 
 
There are three small-scale longitudinal single-nation studies that are similar to ours. 
First, for 497 French physicists, Turner and Mairesse18 showed that 66% of the most 
productive researchers (defined as quartile 1 scientists) and 67% of the least productive 
researchers (defined as quartile 4 scientists) remained such for the period 1986–1997, 
underlying a stability of the relative positions of the researchers in the distribution of 
publication counts over time. Second, in a study of a single Belgian university, 
Kelchtermans and Veugelers24 discussed top research productivity and its persistence over 
time by using a panel dataset comprising the publications of 1,040 biomedical and exact 
scientists for the period 1992–2001. They studied how researchers switch between 
productivity categories over time and showed strong support for an accumulative process, 
which disadvantages scientists with low initial output and advantages highly productive 
scientists. Finally, Abramo et al.42 studied Italian scientists in three consecutive four-year 
periods of 2001–2012. They identified 2,883 top performers in the first period and 
followed them over time. About one-third of top performers retained their top ranking for 
three consecutive periods, and about half retained it for two periods (35% and 55%, 
respectively). 
 
Our research explores a different scale, scope, and methodology: we track a large number 
of late-career scientists from 38 OECD countries from all science sectors (including 
higher education); we examine productivity changes over a prolonged period of time (25–
50 years) across all STEMM disciplines; and we use a longitudinal and classificatory 
approach combined with two-dimensional analyses and logistic regression models. 
 
Persistence in High (and Low) Productivity 
 
The cumulative advantage theory of productivity highlights that “productive scientists are likely 
to be even more productive in the future, while scientists who produce little original work are 
likely to decline further in their productivity”25. Substantial predetermined differences among 
scientists may have a powerful impact on careers17,27. An “initial success” may lead to increased 
productivity; in contrast, a “bad start” may lead to leaving science18. According to the “sacred 
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spark” hypothesis, “there are substantial, predetermined differences among scientists in their 
ability and motivation to do creative scientific research”25. Scientists with the spark are always 
productive, and a differential distribution of talent affects inequality in productivity more than 
the recognition system in science43.  
 
As a result, stratification leads to “persistent hierarchies of productivity”: “once scientists enter 
the current productivity elite, it is rare for them to exit from it in the next period; and the same 
holds true at the lower extreme of the productivity distribution”26. Top performers tend to try 
hard not to disappoint their colleagues and themselves; bottom performers, in contrast, tend to 
lose confidence in their research capabilities. Previous top performance significantly and 
positively affects current top performance24. 
 
Research Questions  
 
At a global scale, we test whether persistence in research productivity over an academic lifetime 
is as prevalent as traditional sociology and economics of science (using analyses based on 
small-scale surveys and limited numbers of interviews) claimed for decades16,27,28,44. Tracking 
the career trajectories of thousands of scientists, we seek otherwise invisible, global mobility 
patterns (whenever we use the term “global,” we in fact refer to 38 OECD countries). 
 
Using a large-scale longitudinal dataset, we also test the usefulness of the two traditional 
conceptions of science that explain individual successes and failures: the accumulation of 
advantages and disadvantages over scientific lifetime (the cumulative advantage theory of 
productivity) and individual-level properties (the sacred spark theory of productivity). 
  
We have posed the following research questions: First, what is the scale of horizontal transitions 
(top to top, bottom to bottom) and radical vertical transitions (bottom to top, top to bottom) 
between global productivity classes? Second, what is the scale of jumping up (and dropping 
down) in science in terms of research productivity—radically changing productivity classes 
upwards or downwards globally? Finally, what are cross-disciplinary and cross-productivity 
differences in mobility patterns between global productivity classes? 
 
Results 
 

Horizontal and Vertical Mobility Patterns Between Productivity Classes 
 
Our sample includes all late-career scientists active in scholarly publishing in 2022 and who 
come from 16 STEMM disciplines and 38 OECD countries, with nonoccasional publishing 
status (at least three journal articles or publications in conference proceedings, lifetime). 
However, by definition, late-career scientists have once been both early career (years 5–14 of 
publishing experience) and mid-career (years 15–24 of publishing experience) scientists. The 
early-career scientists from the three productivity classes may retain or change their classes 
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while being mid-career scientists; and then, they may retain or change their classes again while 
being late-career scientists. We follow 324,643 scientists and compare their individual research 
productivity with that of their peers of the same academic career stage and within the same 
discipline (see flowchart in Figure 6 in Methods). The structure of the sample by discipline, by 
academic age and gender, and by country is shown in Supplementary Tables 1 through 3).  
 
Our analysis has been performed at the micro-level of individuals; we have full data on 
productivity for every scientist in every stage of their careers. Specifically, we analyze the 
following mobility types (and scientists’ types) by discipline and productivity type: (1) top 
performers and their top-to-top mobility; (2) bottom performers and their bottom-to-bottom 
mobility; and (3) Jumpers-Up and Droppers-Down and their extreme upward and extreme 
downward mobility: bottom-to-top mobility and top-to-bottom mobility. 
 
Mobility between Productivity Classes: All Disciplines Combined 
 
Figure 1 presents the lifetime career trajectories of 324,643 late-career scientists in the 
combined 16 STEMM disciplines. Scientists can remain in their global productivity classes or 
move up or down; a Sankey diagram shows the percentage flows between the three productivity 
classes between early career, mid-career, and late-career periods.  
 
The compelling power of the mobility patterns found comes from the power of the microdata at 
the level of individuals traced over time across their careers in this longitudinal study design.  
 
Every late-career scientist currently (annual productivity in the five-year period of 2018–2022) 
allocated to the global top, middle, or bottom productivity classes is also retrospectively 
allocated to some (the same or different) productivity classes when they were early career and 
mid-career scientists. We move across time by examining scientists and their annual 
productivity determined for their three career stages and analyze their individual mobility 
patterns.  
 
There is a clear pattern of persistence in membership in both the global bottom and top 
productivity classes for early career scientists as they progress up the professional ladder. In 
Productivity 1, more than half of the scientists in the top productivity classes remained in the 
same classes in both the early to mid-career transition and mid- to late-career transition, which 
is presented by thick left-to-right horizontal flows. Top-to-top mobility reaches 60.2% for top 
performers in the early career stage and 60.1% for top performers in the mid-career stage. 
Similarly, bottom-to-bottom mobility reaches 55.9% for bottom performers in the early career 
stage and 47.0% for bottom performers in the mid-career stage. These transitions differ only 
slightly for the other three productivity types (see the details in Table 1), as shown in 
Supplementary Figure 2. No matter which productivity type is used in calculations, the general 
mobility patterns for all disciplines combined are similar. 
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Figure 1. Sankey diagram of retrospectively constructed mobility between productivity classes in 
the three career stages. The diagram shows mobility from an early to mid- to late-career stage, with 
the three options of productivity classes (top, middle, and bottom) at each stage. The flows show 
percentage changes between productivity classes. Productivity 1 (prestige-normalized, full-counting 
approach). All STEMM disciplines combined, only current nonoccasional OECD late-career scientists 
(N=324,643) 
 
There is a low likelihood of jumping up (bottom-to-top transition, Jumpers-Up) or of dropping 
down (top-to-bottom transition, Droppers-Down) over a lifetime, which is presented with thin 
ascending and descending flows in Figure 1. The percentages of scientists involved in either of 
these transitions between the three stages (early career to mid-career, mid-career to late career) 
in Productivity 1 range from 1.1% to 2.8% (1.1–3.1% in Productivity 2, 1.5–3.5% in 
Productivity 3, and 1.2–3.9% in Productivity 4). Table 1 provides full data on the numbers of 
scientists in each productivity class and the details of their transitions at a general level of all 
disciplines combined: the top panel presents the data on mobility from early career to mid-
career stage; the middle panel refers to mid-career to late-career stage; and the bottom panel 
describes the sample distribution of late-career scientists by productivity class. We have full 
data on productivity for every scientist in every stage of their careers in each of the four 
productivity type in our dataset. 
 
Specifically, in terms of moving radically upwards in productivity classes in the case of 
Productivity 1 (prestige-normalized, full counting), only 1.6% of bottom performers in the early 
career stage became top performers in the mid-career stage (and 2.6% of bottom performers in 
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the mid-career stage became top performers in the late-career stage). This comes out to just 
1,057 scientists (out of 65,023) and 1,673 (out of 64,971) in both cases, respectively. At the 
same time, in terms of moving radically downwards, only 1.1% of top performers in the early 
career stage became bottom performers in the mid-career stage (and 2.8% of top performers in 
the mid-career stage became bottom performers in the late-career stage).  
 
Overall, the data suggest (Table 1) that the persistence of global membership in top and bottom 
productivity classes, as well as the likelihood of jumping up from bottom to top or dropping down 
from top to bottom classes, varies only slightly across the different productivity types. At the level 
of all disciplines combined, the patterns of mobility across productivity classes and across the four 
productivity types remain relatively consistent.  
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Table 1. Mobility between retrospectively constructed productivity classes in the three career stages. Overview: Productivity 1–4. Current 
nonoccasional OECD late-career scientists only, all disciplines combined, top class transitions shaded (N=324,643). The differences in mobility patterns 
by productivity type are relatively small: they are in the range of 1–4 percentage points (p.p.) for top-to-top and bottom-to-bottom mobility and in the 
range of 0.2 p.p. and 0.5 p.p. for bottom-to-top mobility (Jumpers-Up) and 0.4 p.p. and 1.1 p.p. for top-to-bottom mobility (Droppers-Down). For 
instance, the top-to-top mobility across Productivity 1 through Productivity 4 is 60.2%, 60.6%, 58.8% and 60.0%, respectively (early career to mid-
career); and the bottom-to-bottom mobility is 47.0%, 47.8%, 51.1%, and 47.0%, respectively, for the same career stage mobility. The productivity 
mobility patterns found are stunningly similar across the four productivity types. 

 Productivity 1 (prestige-
normalized, full counting) 

Productivity 2 (prestige-
normalized, fractional 
counting) 

Productivity 3 (non-
normalized, full counting) 

Productivity 4 (non-
normalized, fractional 
counting) 

Transition 
from source 
academic 
position 

Transitio
n from 
productiv
ity class 

Transition 
to target 
academic 
position 

Transitio
n to 
productiv
ity class 

Number 
of 
scientists 
in 
transition 

Number 
of 
scientists 
in each 
productiv
ity class 

% Number 
of 
scientists 
in 
transition 

Number 
of 
scientists 
in each 
productiv
ity class 

% Number 
of 
scientists 
in 
transition 

Number 
of 
scientists 
in each 
productiv
ity class 

% Number 
of 
scientists 
in 
transition 

Number 
of 
scientists 
in each 
productiv
ity class 

% 

Early career Bottom Mid-career  Bottom 36,373 65,023 55.9 36,308 64,934 55.9 41,633 72,877 57.1 36,716 65,330 56.2 
Early career Bottom Mid-career  Middle 27,593 65,023 42.4 27,608 64,934 42.5 29,909 72,877 41.0 27,539 65,330 42.2 
Early career Bottom Mid-career  Top 1,057 65,023 1.6 1,018 64,934 1.6 1,335 72,877 1.8 1,075 65,330 1.7 
Early career Middle Mid-career  Bottom 27,867 194,697 14.3 27,929 194,778 14.3 28,496 187,829 15.2 27,490 194,394 14.1 
Early career Middle Mid-career  Middle 142,042 194,697 73.0 142,302 194,778 73.1 134,542 187,829 71.6 141,982 194,394 73.0 
Early career Middle Mid-career  Top 24,788 194,697 12.7 24,547 194,778 12.6 24,791 187,829 13.2 24,922 194,394 12.8 
Early career Top Mid-career  Bottom 731 64,923 1.1 695 64,931 1.1 938 63,937 1.5 751 64,919 1.2 
Early career Top Mid-career  Middle 25,109 64,923 38.7 24,871 64,931 38.3 25,395 63,937 39.7 25,243 64,919 38.9 
Early career Top Mid-career  Top 39,083 64,923 60.2 39,365 64,931 60.6 37,604 63,937 58.8 38,925 64,919 60.0 
Mid-career  Bottom Late career Bottom 30,508 64,971 47.0 31,015 64,932 47.8 36,299 71,067 51.1 30,513 64,957 47.0 
Mid-career  Bottom Late career Middle 32,790 64,971 50.5 32,131 64,932 49.5 32,998 71,067 46.4 32,468 64,957 50.0 
Mid-career  Bottom Late career Top 1,673 64,971 2.6 1,786 64,932 2.8 1,770 71,067 2.5 1,976 64,957 3.0 
Mid-career  Middle Late career Bottom 32,898 194,744 16.9 31,904 194,781 16.4 34,382 189,846 18.1 32,156 194,764 16.5 
Mid-career  Middle Late career Middle 137,633 194,744 70.7 137,536 194,781 70.6 131,680 189,846 69.4 136,391 194,764 70.0 
Mid-career  Middle Late career Top 24,213 194,744 12.4 25,341 194,781 13.0 23,784 189,846 12.5 26,217 194,764 13.5 
Mid-career  Top Late career Bottom 1,787 64,928 2.8 2,027 64,930 3.1 2,256 63,730 3.5 2,507 64,922 3.9 
Mid-career  Top Late career Middle 24,102 64,928 37.1 25,101 64,930 38.7 23,968 63,730 37.6 25,799 64,922 39.7 
Mid-career  Top Late career Top 39,039 64,928 60.1 37,802 64,930 58.2 37,506 63,730 58.9 36,616 64,922 56.4 
Late career Bottom   65,193 65,193 100 64,946 64,946 100 72,937 72,937 100 65,176 65,176 100 
Late career Middle   194,525 194,525 100 194,768 194,768 100 188,646 188,646 100 194,658 194,658 100 
Late career Top   64,925 64,925 100 64,929 64,929 100 63,060 63,060 100 64,809 64,809 100 
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Mobility Between Productivity Classes: Cross-Disciplinary Differences 
 
First, we briefly focus on Medicine (MED), the largest discipline in our sample, with N = 137,748 
late-career scientists in 2022, and Materials Science (MATER), a relatively small (N = 5,898) 
discipline with very high top-to-top and bottom-to-bottom mobility (Figure 2). Although MED is 
generally in the upper ranges of top-to-top mobility (Figure 5) and mid ranges of bottom-to-
bottom mobility (Supplementary Figure 3) for both transition periods, regardless of the 
productivity type used, MATER is in the top ranges, especially for bottom-to-bottom mobility. In 
MATER, the share of Jumpers-Up is relatively low, in the 1.10–1.53% range for the first 
transition period (and 2.97–3.30% for the second transition period). Interestingly, no scientists in 
MATER belong to Droppers-Down in Productivity 1 (0.76–1.21% in the other productivity 
types). The productivity patterns of the two contrasted disciplines are much different, with 
different career opportunities for scientists in top and bottom productivity classes early in their 
careers. 
 

 
 
 
Figure 2. Sankey diagram of retrospectively constructed mobility between productivity classes in 
the three career stages, Medicine (MED, N = 137,748) and Materials Science (MATER, N = 5,898). 
Productivity 1 (prestige-normalized, full-counting approach). All STEMM disciplines combined, only 
current nonoccasional OECD late-career scientists. 
 
Figure 3 presents Sankey diagrams for the three stages of academic careers for Productivity 1 
(prestige-normalized, full counting) and visualizes the cross-disciplinary differences for all 16 
STEMM disciplines; Supplementary Figure 1 presents mobility patterns for Productivity 2. The 
transitions across the 16 STEMM disciplines are similar—with some small but noticeable 
differences. Figure 4 shows the details of cross-disciplinary differences in top-to-top and bottom-
to-bottom mobility for each discipline by productivity type for the transition between the early 
career to mid-career stage, and Figure 5 – for extreme vertical mobility; Supplementary Figure 3 
shows the transition between the mid- to late-career stage. Strikingly, for all disciplines combined 
(Total in Figure 5), the percentage of scientists who moved from top classes to top classes differs 
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marginally between the four productivity types (the 59–61% range), as does the percentage of 
scientists who moved from bottom classes to bottom classes (the 55–57% range).  
 
The mobility patterns found in lifetime academic careers are complex and vary significantly 
across disciplines. Although the horizontal mobility patterns are relatively consistent across 
disciplines, the extreme vertical mobility patterns (bottom to top, top to bottom) show much 
greater variability. 
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Figure 3. Sankey diagrams of retrospectively constructed mobility between productivity classes in the three career stages. Productivity 1 
(prestige-normalized, full counting). Sixteen STEMM disciplines, current nonoccasional OECD late-career scientists only (N=324,643) 
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Figure 4. Early career to mid-career stage: horizontal mobility patterns. Top-to-top and bottom-
to-bottom mobility by discipline and productivity type, current nonoccasional OECD late-career 
scientists only (N=324,643). Cross-productivity differences for disciplines are generally small, and 
cross-disciplinary differences within productivity types are substantial. For instance, top-to-top 
mobility in Productivity 1 is in the range of 53.42% (ENER) to 62.91% (NEURO) and in 
Productivity 4, it is in the range of 52.80% to 62.99% for the same disciplines. Bottom-to-bottom 
mobility in Productivity 1 is in the range of 50.31% (ENER) to 60.68% (MATER), and in 
Productivity 4, it is in the range of 47.51% (ENER) to 60.47% (CHEM).  
 
Across all disciplines and productivity types, there is a higher proportion of scientists who 
move from the bottom to top classes compared with those who move from the top to bottom 
classes in the case of the first transition; there is also a higher proportion of scientists who 
move from top classes to bottom classes in the second transition. Because of space 
limitations, we do not present the results for a two-stage mobility: from an early career 
directly to late-career stage (see a section in Electronic Supplementary Material). 
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Figure 5. Early career to mid-career stage: extreme vertical mobility patterns. There are two 
disciplines with no Jumpers-Up (ENER and CHEMENG) and no Droppers-Down (MATER and 
CHEMENG).  
 
Model Approach: Logistic Regression 
 
In this subsection, we introduce a multidimensional approach and analyze the odds ratio 
estimates of membership in the classes of top- and bottom-productive scientists for current 
late-career scientists and, retrospectively, for current late-career scientists when they were 
mid-career scientists (the upper 20% and the bottom 20%, separately for each discipline, 
N=324,643). 
 
We use a single demographic variable (gender, binary: male or female) and five variables we 
have computed using micro-level data on individual scientists. Two variables are related to 
individual publication quality (citations within fields, received within the first four years 
after publication; and individual publishing patterns computed with Scopus journals ranks); 
two other variables are related to individual collaboration patterns (average team size and 
international collaboration rate); and one variable is related to publication productivity in 
earlier career stages (prior membership in top and bottom productivity classes).  
 
Publication quality variables and collaboration pattern variables are computed from a 
lifetime perspective of individual scientists: all journal articles and articles in conference 
proceedings published throughout one’s lifetime. Also all publications (lifetime) and all cited 
references were used to compute a single discipline to which every scientists was ascribed 
(see Dataflow in Figure 6, the Methods section). In contrast, membership in productivity 
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classes have been computed for specific periods of careers (early, mid- and late-career 
periods). Additionally, we also use an institutional variable (TOP 200 institution globally). 
The variables and their short descriptions are presented in Table 7 in the Methods section.  
 
Extensive previous research on individual productivity has suggested that the most important 
predictors of high productivity at the individual level are international collaboration45, 
collaboration teams46, gender4,23, career stage47,48 and publication productivity earlier in 
academic careers49, which is consistent with the Matthew effect in science (the rich get 
disproportionately richer, and the poor get poorer29). As a result—and specifically in the 
context of our two-dimensional results visualized through Sankey diagrams—we have also 
added the membership in top and bottom productivity classes. 
 
Logistic Regression, Medicine: Membership in Top and Bottom 
Productivity Classes 
 
For Medicine (MED), the largest discipline in our sample, regression models have been run 
for each productivity type separately. The single most important predictor of membership in 
top (or bottom) productivity classes is membership in top (or bottom) productivity classes at 
earlier stages of scientific careers (Table 2 and Supplementary Table 10). The influence of 
this predictor on membership in top productivity classes is powerful: for mid-career 
scientists, the probability of success increases 11–12 times, depending on productivity type 
(e.g., in the Model 1, Exp(B)=11.136, with 95% C.I.: 11.109–11.163, and in the Model 4, 
Exp(B)=12.474, 95% C.I.: 12.447–12.501). For late-career scientists, the models show 
similarly powerful influence of the class membership predictors: between nine and eleven 
times. Cross-productivity differences in the power of this predictor are larger in the case of 
late-career scientists. 
 
 
The influence of gender is higher for mid-career scientists than for late-career scientists. 
Being a male scientist increases the odds of success for the former by between 34.3% (Model 
1) and 43.5% (Model 4); for the latter, it does so by between 8.4% (Model 2) and 14% 
(Model 1) only. This may mean that the role of gender in reaching top productivity classes 
substantially decreases over the course of scientific careers: its influence is more powerful in 
early years (perhaps when family obligations for women are generally higher) and less 
powerful in later years.  
 
The influence of the two predictors related to publication quality is consistently higher for 
mid- than late-career scientists, both the averaged field-weighted four-year citation impact 
(variable: FWCI 4y) and the average journal percentile rank (variable: AJPR). Although the 
impact on the global scholarly community viewed through a proxy of individual FWCI 4y is 
largely irrelevant for probability of success, the impact of (lifetime) individual publishing 
patterns emerges as an important predictor of success. In Medicine, publishing on average in 
high-impact rather than low-impact journals matters. We examined one-unit increases in the 
individual AJPR (Exp(B)=1.012–1.014, depending on the model), but it is more telling to use 
a 50-unit increase to assess the role of individual publishing patterns. 
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Table 2. Medicine (MED). Logistic regression statistics: odds ratio estimates of membership in the class of top productive mid-career (upper panel) and late-career 
(bottom panel) scientists in Medicine (the top 20%), current nonoccasional OECD late-career scientists in Medicine only (N=137,748). 
Odds ratio estimates of membership in the class of bottom productive scientists are shown in Supplementary Table 10. 
 

Model 1: Productivity 1 - Prestige-
normalized full counting 

Model 2: Productivity 2 - Non-
normalized full counting 

Model 3: Productivity 3 - Prestige-
normalized fractional counting 

Model 4: Productivity 4 - Non-
normalized fractional counting 

95% C.I. for Exp(B) 
95% C.I. for 

Exp(B) 
95% C.I. for Exp(B) 

95% C.I. for 
Exp(B) 

Model 
Exp 
(B) 

Lower Upper 
Sig. Exp(B) 

Lower Upper 
Sig. Exp(B) 

Lower Upper 
Sig. Exp(B) 

Lower Upper 
Sig. 

Mid-career scientists 
 R2 = 0.231 R2 = 0.232 R2 = 0.223 R2 = 0.223 
Male 1.343 1.313 1.372 0 1.354 1.325 1.384 0 1.395 1.366 1.425 0 1.435 1.406 1.465 0 
FWCI 4y 1.015 1.012 1.019 0 1.02 1.016 1.023 0 1.012 1.008 1.015 0 1.016 1.012 1.019 0 
International Collab. Rate 1.007 1.007 1.008 0 1.006 1.005 1.007 0 1.007 1.006 1.007 0 1.005 1.004 1.005 0 
AJPR 1.014 1.013 1.014 0 1.014 1.013 1.015 0 1.014 1.013 1.015 0 1.012 1.012 1.013 0 
Median Team Size 1.03 1.023 1.036 0 0.962 0.956 0.969 0 1.036 1.029 1.042 0 0.969 0.962 0.975 0 
Early Career Top Class 11.136 11.109 11.163 0 11.666 11.639 11.694 0 11.657 11.63 11.683 0 12.474 12.447 12.501 0 
Intercept 0.03 -0.032 0.091 0 0.041 -0.016 0.099 0 0.027 -0.032 0.087 0 0.044 -0.011 0.1 0 

Late-career scientists 
 R2 = 0.224 R2 = 0.201 R2 = 0.215 R2 = 0.18 
Male 1.14 1.111 1.168 0 1.084 1.056 1.113 0 1.156 1.127 1.185 0 1.089 1.061 1.117 0 
FWCI 4y 1.009 1.007 1.012 0 1.006 1.004 1.009 0 1.007 1.005 1.01 0 1.003 1 1.005 0 
International Collab. Rate 1.003 1.003 1.004 0 1.005 1.004 1.006 0 1.003 1.002 1.003 0 1.004 1.004 1.005 0 
AJPR 1.008 1.007 1.009 0 1.008 1.007 1.009 0 1.009 1.008 1.01 0 1.008 1.007 1.009 0 
Median Team Size 1.077 1.07 1.083 0 1.026 1.02 1.032 0 1.079 1.073 1.085 0 1.01 1.004 1.016 0 
TOP200 1.357 1.324 1.39 0 1.341 1.309 1.373 0 1.321 1.288 1.354 0 1.283 1.252 1.315 0 
Mid-Career Top Class 11.259 11.232 11.286 0 10.562 10.534 10.589 0 11.061 11.035 11.088 0 9.734 9.707 9.76 0 
Intercept 0.032 -0.039 0.103 0.049 0.047 -0.019 0.113 0.033 0.029 -0.041 0.099 0.046 0.056 -0.006 0.117 0.023 

Note: Sig 0 means p <= 0.001, AJPR is the Average Journal Percentile Rank 
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Taking publishing on average in journals located in the 90th percentile of Scopus journal ranks 
(generally more prestigious journals) rather than in those in the 40th percentile (generally less 
prestigious journals) as an example: the individual average lifetime journal percentile rank is 
higher by 50 units in a 0–99 continuum of journal ranks in Scopus. For mid-career scientists, the 
probability of success increases by between 60% (Model 4) and 70% (Models 1, 2, and 3). 
Journal prestige emerges as a powerful predictor of membership in top productivity classes, 
especially for mid-career scientists. The TOP200 affiliation increases the odds for late-career 
scientists by about one-third (all other things being equal). 
 
Second, we have also run four logistic regression models showing odds ratio estimates of 
membership in bottom productivity classes (Supplementary Table 10), with generally a mirror 
image of odds ratio estimates of membership in top productivity classes. Being male decreases 
the odds of success for all productivity types and for both career stages. In addition, the two 
publication quality predictors decrease the odds of success, as does the median team size. 
Finally, a lower lifetime international collaboration rate increases the probability of success. 
There is a single most influential predictor across all productivity types: membership in bottom 
productivity classes at earlier career stages, which increases the probability of success by eight 
to nine times for mid-career and by four to five times  for late-career scientists. Belonging to 
bottom productivity classes is more consequential in mid-career than in late-career period which 
confirms our findings about the share of Jumpers-Up among bottom-class scientists for mid-
career (Figure 5) and late-career scientists in Medicine (Supplementary Figure 3). 
 
Logistic Regression, 16 STEMM Disciplines: Membership in Top and 
Bottom Productivity Classes 
 
First, we analyze top productivity classes (Table 3). In the majority of the disciplines, high 
productivity in an earlier stage of career is the most powerful predictor of high productivity in a 
later stage, with Exp(B) in the range of 8.333 (PHYS) and 14.008 (NEURO) for the first career 
stage, and 9.410 (CHEMENG) and 13.402 (CHEM) for the second career stage (in all cases: all 
other things being equal). The direction of the impact of the gender variable is consistent across 
disciplines; however, the impact is highly differentiated and is much stronger for mid- than late-
career scientists. Being male increases the probability of success in 11 disciplines for mid-career 
scientists by as little as 7% in PHYS and by as much as 105% in IMMU. For late-career 
scientists, in contrast, the impact of being male is much lower on average (from 4.4% in 
EARTH to 35.8% in NEURO, with the exception of ENER, where it reaches 99%).  
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Table 3. Overview of logistic regression models by discipline: odds ratio estimates of membership in the class of top productive mid-career (upper panel) 
and late-career (bottom panel) scientists (the upper 20%, separately for each discipline). Productivity 1 (prestige-normalized, full counting), current 
nonoccasional OECD late-career scientists only (N=324,643) 
Odds ratio estimates of membership in the class of bottom productive scientists are shown in Supplementary Table 11. 
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Top productive mid-career scientists 
R2 0.265 0.205 0.255 0.214 0.209 0.262 0.207 0.217 0.248 0.192 0.245 0.239 0.231 0.269 0.176 0.261 
Male 1.266 1.732 1.387   1.228   1.313 2.050 1.201 1.351 1.343 1.743  1.070 
FWCI 4y 1.360 1.131 1.333 1.137 1.031 1.257 1.315  1.209 1.083 1.346 1.162 1.015 1.355 1.025 1.064 
International Collab. Rate 1.007 1.004 1.011 1.011 1.003 1.011 1.003 1.008 1.009 1.006 1.007 1.001 1.007 1.004 1.011 1.009 
AJPR 1.012 1.001 1.005 1.020 1.013 1.007 1.020 1.011 1.010 1.002 1.005 1.006 1.014 1.000 1.016 1.012 
Median Team Size 1.025 0.974 0.939 0.912 1.064 1.040 0.881  1.025 0.997 1.057 1.332 1.030 1.086 0.924 1.117 
Early Career Top Class 11.952 10.628 12.531  9.905 11.321   11.159 8.967 10.836 12.485 11.136 14.008  8.833 
Intercept 0.023 0.063 0.039   0.023    0.05 0.033  0.03 0.026   

Top productive late-career scientists 
R2 0.231 0.209 0.260 0.202 0.180 0.217 0.227 0.236 0.212 0.229 0.258 0.233 0.224 0.225 0.213 0.267 
Male 1.150 1.241 1.148 1.264  1.044 1.990   1.161   1.140 1.358   
FWCI 4y 1.215 1.046 1.268 1.247 1.015 1.099 1.066 1.058  1.270 1.354 1.116 1.009 1.196  1.043 
International Collab. Rate 1.005 1.006 1.008 1.000 1.004 1.007 1.011 1.010 1.008 1.011 1.007 1.001 1.003 1.002 1.006 1.014 
AJPR 1.009 0.999 1.002 1.004 1.005 1.003 1.012 1.011 1.007 0.992 1.004 1.014 1.008 1.004 1.011 0.996 
Median Team Size 0.991 1.039 0.974 1.033  1.003 0.916 0.908 0.955 1.043 0.965 1.211 1.077 1.045 0.976 1.051 
Top200 1.360 1.287 1.472 1.490  1.521 1.904   1.403   1.357 1.197   
Mid-Career Top Class 11.015 11.394 13.402 9.410  10.622 9.642   11.372   11.259 11.736   
Intercept 0.034 0.058           0.032    
Only statistically significant results shown in the table. AJPR is the Average Journal Percentile Rank. 
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The two variables of publication quality emerge as powerful predictors of success, and they are 
statistically significant for almost all disciplines. The role of FWCI 4y is more important in 
some disciplines (e.g., AGRI and CHEM) and less so in others (e.g., COMP and PHYS). 
Average journal percentile rank (AJPR) is a powerful predictor that increases the odds of 
success for all disciplines and for both career stages. A one-unit increase in AJPR (i.e., by one 
percentile rank) increases the odds in the range from 0.1% (BIO) to 2.0% (CHEMENG and 
ENER) for mid-career scientists and from 0.2% (CHEM) to 1.4% (MATH) for late-career 
scientists.  
 
In other words, on average, publishing in high-impact rather than low-impact journals (e.g., the 
90th vs. the 40th percentile of Scopus journals: AJPR higher by 50 units) for mid-career 
scientists increases the odds by between 5% (BIO) and 100% (CHEMENG and ENER). 
However, for late-career scientists, the impact of journal publishing patterns is generally much 
smaller. International collaboration matters for all disciplines and both career stages. For 
scientists in the first career stage (in CHEM, CHEMENG, EARTH, and PHARM), a 50-unit 
increase in the international collaboration rate results in an increase of 55% on average in the 
probability of success. There is no substantial difference in the role of this predictor for late-
career scientists. In contrast, the impact of team size is ambiguous. Finally, the TOP200 
affiliation greatly increases the probability of success in the majority of disciplines by between 
20% and 90%. 
 
Second, we also analyzed bottom productivity classes (Supplementary Table 11). Contrary to 
our findings for Medicine, the results are mirror images of those for top productivity classes 
but only to some extent. Specifically, although the role of membership in bottom productivity 
classes in previous career stages follows the expected pattern—that is, prior membership 
increases the odds of future membership—the independent variables of classes are statistically 
significant only for seven (first career period) and five (second career period) disciplines. 
Membership in bottom productivity classes earlier (publishing years 5–14) increases the 
probability of membership in this class later (publishing years 15–24) by 7–10 times in the 
case of the first career period and by 3–5 times in the case of the second period.  
 
Being a female scientist, as expected, substantially increases the odds of success; what is 
notable is the contrast between BIO (with one of the highest shares of late-career women 
scientists) and ENG (with the lowest share of late-career women scientists) in the case of mid-
career scientists. Being female in BIO increases the odds of success by one-third on average, 
but being female in ENG decreases the odds of success by one-third on average (32.0% and 
34.9%, respectively).  
 

Discussion 
 
Following the results of our longitudinal study based on micro-level data on thousands of late-
career scientists, we suggest that relatively early on in scientific careers, the productivity 
distribution within the global science profession at its two extremes (top and bottom) is already 
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largely settled and that the early global distribution persists over time: for years and decades. 
Exceptions are very rare: bottom performers almost never become top performers, and top 
performers almost never become bottom performers. 
 
Some scientists stay on in academic science and keep publishing, while others stop publishing50,51 
about one-third disappears from academic publishing within five years and about a half within a 
decade52. Within the first 15 years of academic publishing, those who stay on in science are 
already distributed among the classes of global top, middle, and bottom performers within their 
disciplines (according to the 20/60/20 principle).  
 
What is stunning is the persistence of membership in global top and bottom classes from a life 
cycle perspective. Later on in their careers, the majority of top performers keep being top 
performers, and the majority of bottom performers keep being bottom performers. For them, the 
probability of staying in top and bottom classes—horizontal mobility—over the decades of 
scientific careers is high; in contrast, the probability of radically vertically changing productivity 
classes (Jumpers-Up, Droppers-Down) is extremely limited.  
 
Individual research productivity emerges from our regression analyses as highly path dependent: 
for all the examined disciplines, there is a single most important predictor of becoming a top 
productive late-career scientist (and a top productive mid-career scientist): being a top productive 
scientist at an earlier career stage.  
 
For instance, in Medicine, the largest STEMM discipline in our sample, the regression results 
differ only slightly by productivity type (Models 1 through 4, Table 2). Both for current late-
career scientists and for late-career scientists when they were mid-career scientists, the single 
most important predictor of membership in top productivity classes is prior membership in top 
productivity classes. The second most powerful predictor of success in Medicine is gender: 
however, being male is much more influential for mid-career scientists, which increases the 
odds by 34.3%, than for late-career scientists, which increases the odds by merely 14.0%. 
 
The third predictor of success is average journal percentile rank, which reflects lifetime publishing 
patterns: consistent publishing in high-impact academic journals substantially increases the odds 
compared with consistent publishing in low-impact academic journals53,54,55,56. The fourth 
predictor of success is working in the 200 most research-intensive institutions. Finally, the median 
team size and international collaboration rate (all other things being equal) are much less 
important than expected based on the literature about collaboration in science46.  
 
Our large-scale longitudinal analyses show that about 60% of global top productivity scientists 
continue their careers as top productivity scientists, and about a half of bottom productivity 
scientists continue their careers as bottom productivity scientists. The global science system is 
highly immobile: Jumpers-Up and Droppers-Down are extremely rare scholarly species (e.g., 
our micro-level data show that only 1.6% scientists move from early career bottom class to mid-
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career top class, and only 1.1% scientists move from early career top class to mid-career bottom 
class; Productivity 1, Table 1).  
 
A general picture of mobility between productivity classes over the course of entire scientific 
careers based on discipline-aggregated data (Figure 1) hides much more nuanced pictures for 
different disciplines (Figure 3). Some disciplines are much more competitive from the very 
beginning of careers, with radical upward mobility being extremely difficult (or impossible, as 
in MATER and CHEMENG). There are also other disciplines that are much less competitive 
from the very beginning, in which the presence of Jumpers-Up is much higher. Our focus is not 
on globally evolving productivity over time57 or evolving productivity from a generational 
perspective (e.g., the old in science being more productive than the young or the other way 
round34,58) but on interclass mobility of individuals over entire scientific careers. 
 
Why does prior class memberships (top, bottom), to a large extent, determine later class 
memberships (top, bottom)? There are two explanations. First, previous research has shown that 
distribution of productivity among scientists is highly skewed42,59 and that the minority of 
scientists are responsible for the vast majority of publications60. Esteem comes from peers in 
science, and the reward system in science is based on publications. And academic promotions 
and tenure prospects, salary levels, free time for research, and access to research grants, more or 
less directly, are all related to publication productivity16,61. 
 
Second, higher productivity generally leads to new research funding, as the credibility cycle in 
academic careers shows62. In this cycle, research published in prestigious journals (quantity, 
quality) is converted into recognition; successful grant applications are converted into new 
equipment, arguments, and articles. The credibility cycle may be more consequential, determining 
career opportunities, in early career stages: once funded on the basis of prestigious articles, 
scientists’ probability to be funded again are higher than that of their less productive colleagues, at 
least in more meritocratic national research funding systems. In terms of shifting productivity 
classes from a life cycle perspective, scientists who are less successful early on in their careers 
(productivity, luck) will find it difficult, if not impossible, to prove that they are as good as their 
more successful, more productive, more lucky and possibly better funded colleagues.  
 
Our research reconfirms the power of very strong track record as opposed to very weak track 
record in science (whenever individual scientists are assessed by research funding panels and 
promotion committees): for a variety of reasons—which we are not able to examine using our 
dataset—the probability of past global top performers to become global top performers in the 
future is very high, and their probability to become global bottom performers is marginal. At the 
same time, the chances of global bottom performers to reach productivity levels achieved by 
their top-performing colleagues in the very same career stages and within their disciplines are 
marginal.  
 
Persistent productivity stratification emerges from our individual micro-level analyses as a 
powerful feature of global science. Using large numbers of observations, our analyses confirm 
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what traditional productivity theories have been claiming for decades, albeit using small-scale 
interviews and surveys12,13,27,28: success breeds success (as in cumulative advantage theory of 
productivity) and some scientists will always be globally highly performing while others will 
always be globally low performing (as in the sacred spark theory of productivity). 
 
The present research suggests the examination of scientific careers from a comprehensive 
perspective that requires some trade-offs and limitations (see Methods), if steps in new directions 
are to be taken. A large-scale, global, longitudinal, publication- and citation-based approach to 
individual research productivity, which is a cornerstone of scientific careers, uses various proxies 
and relies on different trade-offs but hopefully shows new interesting patterns that are, so far, 
largely underexplored. 
 
Methods 
 
The data were collected from the Scopus bibliometric database and were obtained through a 
multiyear collaborative agreement with the International Center for the Study of Research 
(ICSR) Lab, a cloud computing platform provided for research purposes by Elsevier. Our final 
sample included all late-career scientists who were research active in 2022 (with at least 25 
years of publishing experience) located in 16 STEMM disciplines and coming from 38 OECD 
countries (N=324,643 scientists with N=16,345,891 research articles, Figure 6). For our 
calculations, we utilized the Scopus database dated October 21, 2022.  
 
To achieve aggregate-level results, the ICSR Lab employed the Databricks environment, which 
facilitates the management and execution of cloud computing with Amazon EC2 services. The 
scripts for generating the results were developed using the PySparkSQL library. The run was 
carried out using a cluster in standard mode with Databricks Runtime version 11.2 ML, Apache 
Spark technology version 3.3.0, Scala 2.12, and an i3.2xlarge instance with 61 GB memory, 
eight cores, 1–6 workers for the worker type, and a c4.2xlarge instance with 15 GB memory and 
four cores for the driver type. The execution time took 6 hours, and this operation was initiated 
on January 16, 2023. We obtained the results in CSV format. Subsequently, we employed the 
SankeyMATIC tool for interactive data visualization in the form of Sankey diagrams. 
 
The academic lives of all late-career scientists from 38 OECD countries research-active in 2022 
(N=324,643, with at least 25 years of publishing experience) were retrospectively divided into 
three stages: early, mid-, and late-career stages. All late-career scientists, by definition, were 
initially both early career scientists (in their publishing years 5–14) and mid-career scientists (in 
their publishing years 15–24). We analyzed their current five-year publishing behavior (2018–
2022) and looked back into their past publishing behavior.  
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Figure 6. Flowchart and major steps in data preprocessing: from all scientists in the Scopus 
database to late-career scientists in our sample.  
 
At each career stage, current late-career scientists showed their annual individual productivity. 
Consequently, their productivity was calculated for the recent five-year period and for two earlier 
periods: when they were early career scientists and mid-career scientists. We examined the 
average and median productivity of three age groups among late-career scientists to ensure that 
their productivity for 2018–2022 would not be skewed by academic age within disciplines 
(Supplementary Table 8 and Supplementary Table 9). Our analyses are based on the idea of 
subsequent distributions of scientists into classes: late-career scientists are first distributed by 
current productivity classes (separately within each of the 16 STEMM disciplines) and then, 
retrospectively, by past productivity classes in the two earlier career periods. 
 
Early career scientists may retain or change their classes (top, middle, bottom) while being mid-
career scientists as mid-career scientists may do while being late-career scientists. In the present 
study, we tracked 324,643 scientists for 25–50 years and compared their productivity with 
productivity of their peers (the same academic career stage, the same discipline). 
 
For each scientist in our sample, an individual publication and citation portfolio was 
constructed. The portfolio included Scopus-derived publication metadata and their various 
constructs that accompanied individual authors from their first publication in the dataset to 2022. 
Within portfolios, all metadata and their constructs were linked to the three career periods (e.g., 
annual productivity, AJPR), individual publications (e.g., field-weighted four-year citation 



 23 

impact), or to the whole lifetime careers of scientists (e.g., gender, discipline, international 
collaboration rate, and median team size) (see Variables in Table 7).  
 
Our approach to individual research productivity is longitudinal1,2,3 and classificatory (or class 
based)63,64. First, we tracked the productivity of late-career scientists as individuals ever since 
they have become early career scientists, that is, five years after their first globally indexed 
publication. Second, we did not compare productivity changing over time (as individual 
scientific careers develop) in terms of changing publication numbers—we compared 
productivity in terms of the stable or changing membership in productivity classes while 
scientists get older and move up the professional ladder. Scientists can always be allocated to 
top and bottom classes so that both terms are used not to judge the level of productivity but 
rather to classify it. We aimed to verify whether the mobility patterns found depend on major 
productivity types. 
 
We used four counting methods in examining productivity: two prestige-normalized and two 
prestige non-normalized: Productivity 1 (prestige-normalized, full counting), Productivity 2 
(prestige-normalized, fractional counting), Productivity 3 (non-normalized, full counting), and 
Productivity 4 (non-normalized, fractional counting). Productivity 1 and 2 refer to quantity and 
quality of globally indexed publications at the level of individuals; Productivity 3 and 4 refer to 
quantity only. Prestige normalization refers to journal percentile ranks used in the Scopus 
database (CiteScore ranking, range: 1–99), and it highlights the difference in average scholarly 
efforts between preparing and revising publications in generally less selective and more selective 
journals, with different peer review procedures and acceptance rates. Prestige normalization is 
determined by the number of citations received by the journal (41,474 journals in 2023) in the 
previous four years. In a prestige-normalized approach, the weight of publications depends on 
their location in a vertically stratified system of academic journals39.  
 
Our focus is on scientific careers rather than on publications. Therefore, the unit of analysis is 
individual scientists, with their unambiguously defined individual publication- and citation-related 
attributes (rather than publications, with their properties). A global publication-focused 
bibliometric dataset (raw Scopus dataset owned by Elsevier) was used to define individual 
attributes of all scientists in our sample. The productivity classes of individuals (20/60/20, top / 
middle / bottom) were traced over their lifetime—as early, mid- and late-career scientists.  
 
In the present research, we used a global bibliometric dataset to define scientists’ individual 
attributes. The determination of some attributes have already been described in detail in our 
previous research: gender determination (binary: male or female), discipline determination (using 
all cited references from all publications, lifetime), determining the country of affiliation (using a 
modal value of all affiliations in all publications, lifetime), determination of scientists’ 
nonoccasional status in global science (using a minimum output of three research articles), and 
determining academic age (using the distance in years between the first publication, of any type, 
and 2022)65. Four other individual attributes were used in individual publication and citation 
portfolios (their construction is described in Table 7): international collaboration rate (lifetime), 
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field-weighted four-year citation impact (FWCI 4y), median team size (lifetime), and average 
journal percentile rank (AJPR). The distribution of the sample by academic age (i.e., publishing 
experience) is shown in Figure 7, with further details in Supplementary Tables 1 through 3. 
 

 

 
 

Figure 7. Distribution of academic age: kernel density plot, nonoccasional late-career scientists in 16 
STEMM academic disciplines combined (left panel), and their median academic age (age from the 
first publication), by discipline (right panel) (N=324,643). The kernel density plot shows how the 
number of late-career scientists decreases with every year of academic age. The median academic age of 
late-career scientists in most disciplines falls between 30 and 32 years. The disciplines with the highest 
median age (32 years) are PHYS, PHARM, MATH, and EARTH; the disciplines with the lowest median 
age (30 years) include MATER, ENVIR, ENG, ENER, and COMP. The overall median academic age of 
our sample across all disciplines is 31 years. 
 
Trade-offs and Limitations 
 
The present research shows trade-offs between what is theoretically desirable and what is 
practically possible in studying the global patterns of research productivity, here based on 
currently available global datasets. The trade-offs and limitations are related to data and 
methodology.  
 
First, there seem to be no other longitudinal datasets globally available (38 countries) than Scopus 
(or Web of Science) that can be meaningfully used to examine changing field-normalized 
productivity over scientists’ lifetimes. These datasets are available for selected countries only and 
with selected parameters only (e.g., CRISTIN for Norway, Academic Analytics for the USA, 
RADON for Poland39,59,66); as a result, no longitudinal and discipline-based (as opposed to 
selected country-based) approaches are possible without access to global bibliometric datasets. 
However, bibliometric datasets come with their own limitations, as discussed for at least two 
decades67.  
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Table 7: Variables used in regression analysis. 

No. Variable Description 
1. Gender Gender (binary: female/male) provided by ICSR Lab. Variable classified based on the first name, last name and dominant country 

from the first year of publishing using the Namsor tool. Gender accepted with the probability score >= 0.85 only. 
2. Field-weighted four-year 

citation impact (FWCI 4y) 
Average of the FWCI 4y metric values assigned to each publication in author’s lifetime publication portfolio. The FWCI 4y 
metric value of a publication means the ratio of the number of citations of that publication (obtained in the publication year and 
three consecutive years) to the average number of citations for a similar publication (publication from the same discipline group 
in 4-digit ASJC discipline classification) in the same time frame.  

3. International collaboration 
rate (lifetime) 

Share of author’s international collaborative publications among all collaborative publications (solo publications excluded). For a 
publication to be considered collaborative, the number of all authors in the paper had to be greater than or equal to two. For a 
publication to be considered international, the number of affiliation countries in the paper had to be greater than or equal to two. 

4. Median team size (lifetime) Median of the number of authors for each publication (author + number of collaborators) in author’s lifetime publication 
portfolio. For publications with the number of authors greater than 10, the number of authors is 10. 

5. Average journal percentile 
rank (AJPR) 

Average of the journals’ percentiles assigned to each publication in author’s publishing portfolio: computed separately for early 
career, mid-career, and late-career periods. The percentile value has been taken from the 2022 Journal CiteScore metric for 
discipline with the highest percentile value. 

6. Discipline Dominant discipline based on the modal value from all disciplines assigned to the journals of all cited references in all papers in 
scientists’ lifetime publication portfolios.  

7. TOP200 institutional 
affiliation 

Binary value indicating belonging (true/false) to one of the 200 top institutions. The list of top institutions was ranked based on 
the institutions’ total scholarly output between 2019 and 2022. Each author has been assigned to one institution as the dominant 
one based on the modal value from institutions indicated in author’s lifetime publication portfolio. Used only for second 
transitions: mid-career to late-career (affiliation in early career is too distant in time). 

8. 9. Early career / mid-career 
top class 

Membership in the top 20% of scientists among early career /mid- career scientists in terms of research productivity, separately 
within 16 STEMM disciplines, separately for each of the four productivity types. 

10. 11. Early career / mid-career 
bottom class 

Membership in the bottom 20% of scientists among early career / mid-career scientists in terms of research productivity 
(disciplines and productivity: as above). 
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Second, the character of our dataset determines a reductive understanding of productivity in which 
only Scopus-indexed publications are counted, leaving aside nonindexed publications in local 
languages. However, our focus on STEMM disciplines, generally using English for global 
scholarly communication, makes this research less biased. Additionally, all nonpublishing 
academic activities do not count toward productivity. 
 
Third, the longitudinal nature of our study makes only survivors in science our focus: we leave 
aside all scientists who are not research active for at least 25 years. As a result, being aware of 
high attrition rates in STEMM disciplines52,68 we are aware of a “success bias” in our research: the 
various mobility types between productivity classes analyzed do not actually refer to beginning, 
early and mid-career scientists (active in publishing for less than 5, less than 15, and less than 25 
years, respectively). Our study takes a long-term view in which, necessarily, because of high 
attrition in science, the majority of currently active scientists are not represented. 
 
Finally, our methodology has clear limitations that are especially evident if we compare the 
present study to single-nation studies of productivity. In single-nation studies a wealth of national 
data are used (e.g., individual career histories with promotion dates, doctoral and postdoctoral 
dissertation details, research funding details, national classifications of disciplines, national 
rankings of institutions, etc.), not unavailable at a global level. Additionally, our global study 
examines scientists from systems with different research funding levels and average individual 
productivity. Out of necessity, our analyses have to rely on several proxies: on a commercial 
journal classification (Scopus All Science Journal Classification system, ASJC) and journal 
disciplinary classifications rather than on a wealth of national disciplinary classifications69; data 
on individual Scopus IDs rather than data on “real scientists” with their national registry-based 
IDs; on inferred rather than self-declared, administrative gender, based on gender-determining 
algorithms (probability threshold: 0.85); on a single country affiliation and single institutional 
affiliation rather than on a plethora of changing country and institutional affiliations, at least for 
some scientists. 
 
This paper is accompanied by Supplementary Material that is available online. 
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Supplementary Table 1. Structure of the sample of all nonoccasional OECD late-career scientists by 
gender, STEMM discipline, and country (N=324,643) 

 

 Female scientists Male scientists Total 
 N % row % col N % 

row 
% 
col 

N % 
row 

% 
col 

AGRI 6,227 25.72 7.44 17,984 74.28 7.46 24,211 100.00 7.46 
BIO 15,034 31.49 17.97 32,709 68.51 13.57 47,743 100.00 14.71 
CHEMENG 168 16.22 0.20 868 83.78 0.36 1,036 100.00 0.32 
CHEM 3,229 21.27 3.86 11,955 78.73 4.96 15,184 100.00 4.68 
COMP 1,185 14.75 1.42 6,849 85.25 2.84 8,034 100.00 2.47 
EARTH 2,623 17.32 3.14 12,522 82.68 5.20 15,145 100.00 4.67 
ENER 87 10.82 0.10 717 89.18 0.30 804 100.00 0.25 
ENG 1,222 8.72 1.46 12,788 91.28 5.31 14,010 100.00 4.32 
ENVI 1,631 23.87 1.95 5,201 76.13 2.16 6,832 100.00 2.10 
IMMU 1,079 33.09 1.29 2,182 66.91 0.91 3,261 100.00 1.00 
MATER 1,089 18.46 1.30 4,809 81.54 2.00 5,898 100.00 1.82 
MATH 1,128 15.71 1.35 6,051 84.29 2.51 7,179 100.00 2.21 
MED 43,258 31.40 51.71 94,490 68.60 39.21 137,748 100.00 42.43 
NEURO 1,670 28.10 2.00 4,273 71.90 1.77 5,943 100.00 1.83 
PHARM 472 34.71 0.56 888 65.29 0.37 1,360 100.00 0.42 
PHYS 3,560 11.77 4.26 26,695 88.23 11.08 30,255 100.00 9.32 
TOTAL 83,662 25.77 100 240,981 74.23 100 324,643 100.00 100 
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Supplementary Table 2. Structure of the sample of all nonoccasional OECD late-career scientists by 
academic age (publishing experience) and gender (N=324,643) 
 

Academic 
age 
 
 

Female 
scientists 
 
 

Male 
scientists 
 
 

% Female 
scientists 
 
 

% Male 
scientists 
 
 

Total  
 
 
 

Male to 
Female 
Rate 
(MFR) 
 

25 8,692 18,922 31.48 68.52 27,614 2.18 
26 8,543 18,644 31.42 68.58 27,187 2.18 
27 8,123 18,787 30.19 69.81 26,910 2.31 
28 6,700 16,270 29.17 70.83 22,970 2.43 
29 6,317 15,605 28.82 71.18 21,922 2.47 
30 5,817 14,566 28.54 71.46 20,383 2.50 
31 5,107 13,262 27.80 72.20 18,369 2.60 
32 4,494 12,753 26.06 73.94 17,247 2.84 
33 4,408 12,297 26.39 73.61 16,705 2.79 
34 3,749 11,715 24.24 75.76 15,464 3.12 
35 3,315 10,520 23.96 76.04 13,835 3.17 
36 2,791 9,433 22.83 77.17 12,224 3.38 
37 2,510 8,547 22.70 77.30 11,057 3.41 
38 2,151 8,180 20.82 79.18 10,331 3.80 
39 1,986 7,504 20.93 79.07 9,490 3.78 
40 1,645 6,508 20.18 79.82 8,153 3.96 
41 1,456 6,235 18.93 81.07 7,691 4.28 
42 1,289 5,310 19.53 80.47 6,599 4.12 
43 1,033 4,732 17.92 82.08 5,765 4.58 
44 856 4,283 16.66 83.34 5,139 5.00 
45 677 3,685 15.52 84.48 4,362 5.44 
46 607 3,239 15.78 84.22 3,846 5.34 
47 439 2,878 13.23 86.77 3,317 6.56 
48 389 2,640 12.84 87.16 3,029 6.79 
49 325 2,377 12.03 87.97 2,702 7.31 
50 243 2,089 10.42 89.58 2,332 8.60 
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Supplementary Table 3. Structure of the sample of all nonoccasional OECD late-career scientists by 
gender and country, top 20 countries only (N=324,643).  
 
 Female scientists Male scientists Total 
 N % row % col N % row % col N % row % col 
United States 26,193 26.96 31.31 70,960 73.04 29.45 97,153 100 29.93 
Japan 2,897 9.57 3.46 27,370 90.43 11.36 30,267 100 9.32 
Italy 10,774 37.03 12.88 18,318 62.97 7.60 29,092 100 8.96 
France 6,372 29.41 7.62 15,293 70.59 6.35 21,665 100 6.67 
United Kingdom 5,243 24.69 6.27 15,991 75.31 6.64 21,234 100 6.54 
Germany 3,417 16.57 4.08 17,201 83.43 7.14 20,618 100 6.35 
Spain 4,701 34.40 5.62 8,966 65.60 3.72 13,667 100 4.21 
Canada 3,551 28.32 4.24 8,987 71.68 3.73 12,538 100 3.86 
Australia 2,896 28.83 3.46 7,149 71.17 2.97 10,045 100 3.09 
Netherlands 1,886 23.58 2.25 6,114 76.43 2.54 8,000 100 2.46 
Poland 2,014 33.62 2.41 3,977 66.38 1.65 5,991 100 1.85 
South Korea 589 12.26 0.70 4,214 87.74 1.75 4,803 100 1.48 
Sweden 1,290 27.15 1.54 3,462 72.85 1.44 4,752 100 1.46 
Switzerland 698 17.38 0.83 3,317 82.62 1.38 4,015 100 1.24 
Belgium 924 25.92 1.10 2,641 74.08 1.10 3,565 100 1.10 
Turkey 869 25.08 1.04 2,596 74.92 1.08 3,465 100 1.07 
Greece 877 25.45 1.05 2,569 74.55 1.07 3,446 100 1.06 
Israel 918 27.02 1.10 2,480 72.98 1.03 3,398 100 1.05 
Mexico 925 30.57 1.11 2,101 69.43 0.87 3,026 100 0.93 
Denmark 787 26.62 0.94 2,169 73.38 0.90 2,956 100 0.91 
Other 5,841 27.88 6.99 15,106 72.12 6.23 20,947 100 6.46 
TOTAL 83,662 25.77 100 240,981 74.23 100 324,643 100 100 
 



Supplementary Table 4. Productivity 2 (prestige-normalized, fractional counting), three stages. Mobility between retrospectively 
constructed productivity classes in the three stages of academic careers, current nonoccasional OECD late-career scientists only, all disciplines 
combined (N=324,643).  
Tables for Productivity 3 and Productivity 4 available upon request (space limitations). 
 
 Female scientists Male scientists Total 
Transition from 
source academic 
position 

Transition 
from 
productivit
y class 

Transition to 
target academic 
position 

Transition 
to 
productivit
y class 

Number 
of 
scientists 
in 
transition 

Number of 
scientists 
in each 
productivit
y class 

% Number 
of 
scientists 
in 
transition 

Number of 
scientists 
in each 
productivit
y class 

% Number 
of 
scientists 
in 
transition 

Number of 
scientists 
in each 
productivit
y class 

% 

Early career Bottom Mid-career Bottom 11,326 20,423 55.5 24,982 44,511 56.1 36,308 64,934 55.9 
Early career Bottom Mid-career Middle 8,868 20,423 43.4 18,740 44,511 42.1 27,608 64,934 42.5 
Early career Bottom Mid-career Top 229 20,423 1.1 789 44,511 1.8 1,018 64,934 1.6 
Early career Middle Mid-career Bottom 8,013 52,353 15.3 19,916 142,425 14.0 27,929 194,778 14.3 
Early career Middle Mid-career Middle 39,032 52,353 74.6 103,270 142,425 72.5 142,302 194,778 73.1 
Early career Middle Mid-career Top 5,308 52,353 10.1 19,239 142,425 13.5 24,547 194,778 12.6 
Early career Top Mid-career Bottom 109 10,886 1.0 586 54,045 1.1 695 64,931 1.1 
Early career Top Mid-career Middle 4,540 10,886 41.7 20,331 54,045 37.6 24,871 64,931 38.3 
Early career Top Mid-career Top 6,237 10,886 57.3 33,128 54,045 61.3 39,365 64,931 60.6 
Mid-career Bottom Late career Bottom 9,292 19,448 47.8 21,723 45,484 47.8 31,015 64,932 47.8 
Mid-career Bottom Late career Middle 9,801 19,448 50.4 22,330 45,484 49.1 32,131 64,932 49.5 
Mid-career Bottom Late career Top 355 19,448 1.8 1,431 45,484 3.2 1,786 64,932 2.8 
Mid-career Middle Late career Bottom 8,300 52,440 15.8 23,604 142,341 16.6 31,904 194,781 16.4 
Mid-career Middle Late career Middle 37,804 52,440 72.1 99,732 142,341 70.1 137,536 194,781 70.6 
Mid-career Middle Late career Top 6,336 52,440 12.1 19,005 142,341 13.4 25,341 194,781 13.0 
Mid-career Top Late career Bottom 291 11,774 2.5 1,736 53,156 3.3 2,027 64,930 3.1 
Mid-career Top Late career Middle 4,369 11,774 37.1 20,732 53,156 39.0 25,101 64,930 38.7 
Mid-career Top Late career Top 7,114 11,774 60.4 30,688 53,156 57.7 37,802 64,930 58.2 
Late career Bottom   17,883 17,883 100 47,063 47,063 100 64,946 64,946 100 
Late career Middle   51,974 51,974 100 142,794 142,794 100 194,768 194,768 100 
Late career Top   13,805 13,805 100 51,124 51,124 100 64,929 64,929 100 
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Supplementary Figure 1. Sankey diagrams of retrospectively constructed mobility between productivity classes in the three career stages. Productivity 2 
(prestige-normalized, full counting). Sixteen STEMM disciplines, current nonoccasional OECD late-career scientists only (N=324,643) 
Figures for Productivity 3 and Productivity 4 available upon request (space limitations). 
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Supplementary Figure 2. Productivity 1-4, overview, transitions between three career stages. 
Sankey diagrams of retrospectively constructed mobility between productivity classes in the 
three career stages. All STEMM disciplines combined, only current nonoccasional OECD late-
career scientists. Four productivity types:  Productivity 1 (prestige-normalized, full counting) (left 
upper), Productivity 2 (prestige-normalized, fractional counting) (right upper), Productivity 3 (non-
normalized, full counting) (left down), and Productivity 4 (non-normalized, fractional counting) 
(right down) (N=324,643). 
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Supplementary Figure 3. Mid-career to late-career stage: horizontal and extreme vertical 
mobility patterns. Top-to-top and bottom-to-bottom mobility, Jumpers-Up (bottom-to-top mobility) 
and Droppers-Down (top-to-bottom mobility) by discipline and productivity type, current 
nonoccasional OECD late-career scientists only (N=324,643). For all disciplines combined, the 
percentage of scientists who moved from top to top classes differs more between the four productivity 
types than for the first transition (Total: the 56.40%-60.13% range), as does the percentage for 
scientists who moved from bottom to bottom classes (Total: the 46.96%-51.09% range). Both cross-
productivity differences for disciplines and cross-disciplinary differences within productivity types are 
substantial.  



 38 

Mobility Between Productivity Classes: Two Stages of Academic 
Careers  
 
Apart from examining the three stages of academic careers separately (transitions early to 
mid-careers, and mid- to late-careers), we have also examined two stages only, that is, the 
direct transitions from the early career stage to late-career stage. Some scientists have been 
top performers and bottom performers both in their early career and now in their late-career 
stage; also, some scientists changed their productivity classes radically.  
 
Figure 12 shows the Sankey diagrams of mobility of the productivity classes between the 
two stages of an academic career for all STEMM disciplines combined by productivity type. 
The percentage of scientists who moved from the top productivity class to the top 
productivity class differs marginally between the four productivity types (42.7–44.5%; see 
an overview in Table 6). In addition, the percentage for scientists who moved from the 
bottom class to the bottom class also differs marginally between the four three productivity 
types (42.7–44.5%).  
 
The pattern for transitions between two stages only is weaker than in the case of the three 
stages discussed above. The two radical vertical transitions between productivity classes are 
at a much higher level: the percentage of Jumpers-Up is in the range of 6.9–7.1%, and of 
Droppers-Down, it is in the range of 6.4–7.8%  

 



 39 

 
Supplementary Figure 4. Productivity 1-4, overview, two career stages. Sankey diagrams of 
mobility between productivity classes in the two stages (early-career directly to late-career stage) of 
an academic career. All STEMM disciplines are combined, and only current late-career scientists are 
shown. Four productivity types:  Productivity 1 (prestige-normalized, full counting) (left upper), 
Productivity 2 (prestige-normalized, fractional counting) (right upper), Productivity 3 (non-
normalized, full counting) (left down), and Productivity 4 (non-normalized, fractional counting) 
(right down), current nonoccasional OECD late-career scientists only  (N=324,643). 
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Supplementary Table 5. Overview: productivity 1-4, two career stages. Mobility between productivity classes in the two stages (early-career directly 
to late-career stage) of academic careers, current nonoccasional OECD late-career scientists only, all disciplines (N=324,643) 
 Productivity 1 (prestige-

normalized, full counting) 
Productivity 2 (prestige-
normalized, fractional 
counting) 

Productivity 3 (non-
normalized, full counting) 

Productivity 4 (non-
normalized, fractional 
counting) 

Transition 
from source 
academic 
position 

Transitio
n from 
productiv
ity class 

Transition 
to target 
academic 
position 

Transitio
n to 
productiv
ity class 

Number 
of 
scientists 
in 
transition 

Number 
of 
scientists 
in each 
productiv
ity class 

% Number 
of 
scientists 
in 
transition 

Number 
of 
scientists 
in each 
productiv
ity class 

% Number 
of 
scientists 
in 
transition 

Number 
of 
scientists 
in each 
productiv
ity class 

% Number 
of 
scientists 
in 
transition 

Number 
of 
scientists 
in each 
productiv
ity class 

% 

Early career Bottom Late career Bottom 24,148 65,023 37.1 24,671 64,934 38.0 29,272 72,877 40.2 24,410 65,330 37.4 
Early career Bottom Late career Middle 36,402 65,023 56.0 35,834 64,934 55.2 38,619 72,877 53.0 36,303 65,330 55.6 
Early career Bottom Late career Top 4,473 65,023 6.9 4,429 64,934 6.8 4,986 72,877 6.8 4,617 65,330 7.1 
Early career Middle Late career Bottom 36,854 194,697 18.9 36,141 194,778 18.6 38,672 187,829 20.6 36,096 194,394 18.6 
Early career Middle Late career Middle 126,275 194,697 64.9 126,740 194,778 65.1 118,602 187,829 63.1 125,855 194,394 64.7 
Early career Middle Late career Top 31,568 194,697 16.2 31,897 194,778 16.4 30,555 187,829 16.3 32,443 194,394 16.7 
Early career Top Late career Bottom 4,191 64,923 6.5 4,134 64,931 6.4 4,993 63,937 7.8 4,670 64,919 7.2 
Early career Top Late career Middle 31,848 64,923 49.1 32,194 64,931 49.6 31,425 63,937 49.2 32,500 64,919 50.1 
Early career Top Late career Top 28,884 64,923 44.5 28,603 64,931 44.1 27,519 63,937 43.0 27,749 64,919 42.7 
Late career Bottom   65,193 65,193 100 64,946 64,946 100 72,937 72,937 100 65,176 65,176 100 
Late career Middle   194,525 194,525 100 194,768 194,768 100 188,646 188,646 100 194,658 194,658 100 
Late career Top   64,925 64,925 100 64,929 64,929 100 63,060 63,060 100 64,809 64,809 100 
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Mobility Between Productivity Classes: Two Stages of Academic 
Careers, Cross-disciplinary Differences 
 
The cross-productivity differences between disciplines in the top-to-top mobility are generally 
in the range of 10 p.p.; they are lower in the bottom-to-bottom mobility. Figure 13 shows the 
differences in mobility patterns for each discipline by productivity type. Cross-disciplinary 
differences within productivity types are substantial for all four transition patterns examined, 
and they are much higher for transitions between two stages than for the three-stage transitions 
studied above. For instance, in Productivity 1, top-to-top mobility ranges from 37.87% 
(PHARM) to 47.84% (CHEM). Cross-disciplinary differences are higher for bottom-to-bottom 
mobility than for top-to-top mobility; in Productivity 1, bottom-to-bottom mobility ranges 
from 31.68% to 40.51%. In addition, in the case of Jumpers-Up and Droppers-Down, the 
differences are much higher than in the case of three-stage transitions, reaching the 0.0–
10.00% range for the former and 0.0–8.82% range for the latter mobilities. 
 
There are disciplines in which extreme upward mobility opportunities are higher and others, in 
which they are very limited (leading to different distribution of Jumpers-Up by discipline). 
There are also disciplines in which extreme downward mobility is a viable option and others in 
which it is marginal phenomenon (leading to different distribution of Droppers-Down by 
discipline). There is an interesting special case: in chemical engineering (CHEMENG), the 
chances for being a Jumper-Up are zero (in three out of four productivity types). 
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Supplementary Figure 5. Horizontal and extreme vertical mobility patterns (two career stages: 
early-career directly to late-career stage). Top to top and bottom to bottom mobility, Jumpers-Up 
(bottom to top mobility) and Droppers-Down (top to bottom mobility) by discipline and productivity 
type, current nonoccasional OECD late-career scientists only (N=324,643) 
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Collinearity: In order to check the combined multidimensional influence of dependent variables in the model, an analysis of inverse 
correlation matrices was performed and main diagonals were analyzed: none of the variables in any of the models is characterized by 
significantly larger values than the others; no collinearity is reported. 
 
Supplementary Table 6. Inverse correlation matrix main diagonal, top productivity model, scientists in mid-career class. 
Table for bottom productivity model available upon request (space limitations). 
Variable 
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Male 1.012 1.032 1.014 1.019 1.003 1.009 1.002 1.003 1.010 1.034 1.010 1.020 1.019 1.027 1.017 1.007 
FWCI 4y 1.345 1.147 1.138 1.161 1.105 1.180 1.279 1.177 1.286 1.211 1.186 1.203 1.070 1.182 1.247 1.086 
International Collab. Rate 1.114 1.159 1.095 1.117 1.062 1.303 1.205 1.094 1.129 1.161 1.168 1.046 1.139 1.124 1.103 1.447 
AJPR 1.420 1.230 1.299 1.216 1.228 1.252 1.503 1.293 1.392 1.251 1.359 1.249 1.294 1.292 1.394 1.119 
Median Team Size 1.192 1.234 1.142 1.140 1.089 1.310 1.368 1.094 1.246 1.258 1.277 1.112 1.208 1.209 1.196 1.440 
Early Career Top Class 1.120 1.044 1.083 1.094 1.097 1.121 1.134 1.098 1.114 1.082 1.114 1.106 1.084 1.071 1.071 1.178 
AJPR = Average Journal Percentile Rank 
 
Supplementary Table 7. Inverse correlation matrix main diagonal, top productivity model, scientists in late-career class.  
Table for bottom productivity model available upon request (space limitations). 
Variable 
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Male 1.019 1.028 1.008 1.018 1.005 1.009 1.012 1.005 1.012 1.038 1.011 1.018 1.017 1.025 1.038 1.007 
FWCI 4y 1.343 1.131 1.170 1.186 1.086 1.128 1.230 1.173 1.252 1.291 1.282 1.209 1.067 1.241 1.276 1.124 
International Collab. Rate 1.180 1.214 1.116 1.171 1.121 1.355 1.154 1.157 1.211 1.201 1.219 1.049 1.217 1.169 1.180 1.488 
AJPR 1.482 1.325 1.453 1.356 1.279 1.273 1.500 1.329 1.445 1.333 1.479 1.280 1.404 1.397 1.434 1.133 
Median Team Size 1.284 1.364 1.300 1.283 1.144 1.379 1.322 1.136 1.297 1.356 1.389 1.137 1.338 1.309 1.358 1.510 
TOP200 1.022 1.018 1.044 1.030 1.024 1.017 1.022 1.055 1.033 1.014 1.038 1.034 1.033 1.017 1.040 1.015 
Mid Career Top Class 1.122 1.053 1.117 1.117 1.110 1.117 1.107 1.114 1.118 1.088 1.130 1.103 1.088 1.079 1.089 1.200 
AJPR = Average Journal Percentile Rank 
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Average and Median Productivity, by Discipline and Career Stage 
 
Supplementary Table 8. Average annual productivity, by discipline and career stage (Productivity 1: prestige-normalized, full counting).  
Tables for Productivity 2, Productivity 3, and Productivity 4 available upon request (space limitations). 
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25-35 1.028 1.284 1.773 1.204 0.704 1.111 0.743 0.858 1.011 1.314 1.517 0.969 1.308 1.369 1.252 2.232 
36-40 0.906 1.388 1.424 0.956 0.705 0.846 0.487 0.782 0.813 1.381 1.060 0.810 1.391 1.295 1.307 1.830 

Early 

41-50 0.778 1.426 1.301 0.836 0.641 0.737 0.468 0.722 0.770 1.374 0.817 0.740 1.362 1.399 1.360 1.300 
25-35 1.980 2.102 3.086 2.329 1.280 2.141 1.864 1.717 2.092 2.281 2.974 1.332 2.357 2.206 1.986 4.511 
36-40 1.674 2.182 2.688 1.980 1.043 1.696 1.026 1.334 1.571 2.448 2.377 1.153 2.229 2.049 1.827 2.965 

Middle 

41-50 1.461 2.522 2.586 1.628 1.012 1.397 0.857 1.251 1.394 2.346 2.036 1.002 2.417 2.286 2.064 2.643 
25-35 2.702 2.531 3.536 3.157 2.146 2.909 3.029 2.629 2.919 3.054 3.758 1.739 3.426 2.605 2.591 5.538 
36-40 2.713 2.663 3.524 3.212 1.943 2.802 2.380 2.530 2.848 3.404 3.683 1.642 3.633 2.517 2.438 5.688 

Late 

41-50 2.451 2.540 3.366 3.272 1.803 2.471 3.176 2.244 2.401 2.959 3.431 1.450 3.526 2.497 2.266 5.660 
 
Supplementary Table 9. Median annual productivity, by discipline and career stage (Productivity 1: prestige-normalized, full counting).  
Tables for Productivity 2, Productivity 3, and Productivity 4 available upon request (space limitations). 
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25-35 0.769 1.007 1.385 0.885 0.488 0.867 0.530 0.586 0.705 1.063 1.096 0.755 0.884 1.077 0.897 1.506 
36-40 0.704 1.094 1.098 0.769 0.508 0.655 0.283 0.542 0.588 1.158 0.731 0.626 0.965 1.039 1.007 1.260 

Early 

41-50 0.583 1.121 0.992 0.580 0.445 0.584 0.232 0.466 0.555 1.169 0.532 0.583 0.937 1.070 1.034 0.945 
25-35 1.403 1.530 2.202 1.562 0.864 1.597 1.098 1.111 1.435 1.713 2.030 0.975 1.433 1.631 1.283 2.091 
36-40 1.258 1.632 2.005 1.571 0.718 1.286 0.533 0.907 1.103 2.015 1.668 0.875 1.452 1.567 1.402 2.036 

Middle 

41-50 1.104 1.954 1.927 1.099 0.705 1.097 0.381 0.857 1.028 1.991 1.451 0.792 1.630 1.708 1.621 1.741 
25-35 1.825 1.773 2.258 1.919 1.404 2.027 1.818 1.611 1.914 1.989 2.278 1.182 1.934 1.818 1.553 2.301 
36-40 1.843 1.813 2.187 2.117 1.300 1.962 1.510 1.558 1.816 2.124 2.421 1.114 2.066 1.664 1.635 2.263 

Late 

41-50 1.606 1.737 2.096 1.944 1.108 1.653 1.419 1.337 1.581 1.919 2.096 1.000 1.932 1.735 1.606 2.005 
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Supplementary Table 10. Medicine. Logistic regression statistics: odds ratio estimates of membership in the class of bottom productive mid-career scientists (upper 
panel) and late-career scientists (bottom panel) in Medicine (the bottom 20%), current nonoccasional OECD late-career scientists in Medicine only (N=137,748) 
 

Model 1: Productivity 1 - Prestige-
normalized full counting 

Model 2: Productivity 2 - Non-
normalized full counting 

Model 3: Productivity 3 - Prestige-
normalized fractional counting 

Model 4: Productivity 4 - Non-
normalized fractional counting 

95% C.I. for Exp(B) 
95% C.I. for  

Exp(B) 
95% C.I. for  

Exp(B) 
95% C.I. for  

Exp(B) 
Model 

Exp 
(B) 

Lower Upper 
Sig. Exp(B) 

Lower Upper 
Sig. Exp(B) 

Lower Upper 
Sig. Exp(B) 

Lower Upper 
Sig. 

Mid-career scientists 
 R2 = 0.186 R2 = 0.184 R2 = 0.194 R2 = 0.186 
Male 0.917 0.89 0.943 0 0.882 0.855 0.909 0 0.884 0.858 0.909 0 0.837 0.81 0.863 0 
FWCI 4y 0.998 0.994 1.002 0 0.997 0.993 1.001 0 1.002 0.999 1.005 0 1.002 0.999 1.005 0 
International Collab. Rate 0.992 0.991 0.993 0 0.992 0.992 0.993 0 0.994 0.993 0.995 0 0.995 0.994 0.995 0 
AJPR 0.993 0.993 0.994 0 0.993 0.993 0.994 0 0.99 0.989 0.99 0 0.99 0.99 0.991 0 
Median Team Size 0.988 0.982 0.993 0 1.02 1.015 1.026 0 1.001 0.995 1.006 0 1.023 1.017 1.028 0 
Early Career Bottom Class 8.267 8.238 8.297 0 8.634 8.605 8.664 0 8.735 8.71 8.761 0 9.111 9.085 9.137 0 
Intercept 0.237 0.191 0.284 0 0.204 0.16 0.249 0 0.296 0.254 0.338 0 0.239 0.198 0.281 0 

Late-career scientists 
 R2 = 0.111 R2 = 0.114 R2 = 0.121 R2 = 0.101 
Male 0.985 0.96 1.011 0 0.959 0.934 0.985 0 0.917 0.892 0.942 0 0.894 0.869 0.919 0 
FWCI 4y 0.99 0.986 0.994 0 1.001 0.999 1.004 0 1.001 0.999 1.004 0 1.003 1.001 1.005 0 
International Collab. Rate 0.994 0.994 0.995 0 0.995 0.994 0.995 0 0.997 0.997 0.998 0 0.997 0.996 0.998 0 
AJPR 0.993 0.992 0.994 0 0.991 0.991 0.992 0 0.995 0.994 0.995 0 0.993 0.993 0.994 0 
Median Team Size 0.967 0.962 0.972 0 1.062 1.057 1.068 0 0.973 0.968 0.978 0 1.059 1.053 1.064 0 
TOP200 0.719 0.684 0.755 0 0.706 0.67 0.743 0 0.784 0.749 0.818 0 0.791 0.756 0.825 0 
Mid Career Bottom Class 4.329 4.302 4.357 0 5.055 5.027 5.082 0 5.507 5.481 5.532 0 5.174 5.148 5.2 0 
Intercept 0.395 0.345 0.444 0 0.224 0.176 0.272 0 0.311 0.264 0.358 0 0.196 0.15 0.242 0 

Note: Sig 0 means p <= 0.001, AJPR = Average Journal Percentile Rank 
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Supplementary Table 11. Overview of logistic regression models by discipline: odds ratio estimates of membership in the class of bottom productive mid-career 
scientists (upper panel) and late-career (bottom panel) (the lower 20%, separately for each discipline). Productivity 1 (prestige-normalized, full counting), current 
nonoccasional OECD late-career scientists only (N=324,643) 
Tables for Productivity 2, Productivity 3, and Productivity 4 available upon request (space limitations). 

Only statistically significant results shown in the table. AJPR = average Journal Percentile Rank. 
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Bottom productive mid-career scientists 
R2 0.200 0.141 0.202 0.206 0.138 0.218 0.137 0.180 0.180 0.172 0.234 0.181 0.186 0.178 0.174 0.196 
Male 0.982 0.680 0.972     1.349  0.712   0.917 0.706   
FWCI 4y 0.726 0.940 0.828 1.009 0.915 0.754 0.849 0.893  0.890 0.798  0.998 0.691  0.968 
International Collab. Rate 0.995 0.997 0.992 0.999 0.997 0.993 0.995 0.996 0.994 0.998 0.994 0.995 0.992 0.997 1.000 0.992 
AJPR 0.996 0.997 1.003 0.995 0.995 0.996 0.993 0.993 0.995 0.994 0.999 0.998 0.993 0.999 0.988 0.997 
Median Team Size 0.966 1.033 0.982 0.929 0.984 0.982 1.012 1.094 0.995 1.063 0.920  0.988 0.978 1.040 0.999 
Early Career Bottom Class 7.718 6.985 10.721     7.172  8.077   8.267 7.297   
Intercept 0.302 0.221           0.237 0.375   

Bottom productive late-career scientists 
R2 0.125 0.087 0.147 0.133 0.075 0.130 0.095 0.114 0.114 0.119 0.146 0.113 0.111 0.102 0.076 0.139 
Male  0.889        0.867  1.152 0.985 0.873   
FWCI 4y  0.891   0.962  0.781   0.873  0.761 0.990 0.829 1.019 0.972 
International Collab. Rate 0.998 0.995 0.993 0.997 1.000 0.995 0.994 0.993 0.995 0.996 0.992 0.999 0.994 0.995 0.997 0.990 
AJPR 0.990 0.997 0.997 0.996 0.985 0.996 0.985 0.987 0.994 0.996 1.000 0.985 0.993 0.998 0.989 1.001 
Median Team Size 1.008 0.980   0.987 1.019 1.294 1.113  0.968 1.061 0.961 0.967 0.975 1.028 0.990 
Top200  0.787          0.852 0.719 0.793   
Mid-Career Bottom Class  4.125        5.379  3.669 4.329 4.596   
Intercept  0.385           0.395    
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